ROR1: A PROMISING TARGET IN B-NHL (MCL, CLL, MZL, DLBCL) CLINICAL EXPERIENCE WITH A FULLY-HUMANIZED MAb AND NOVEL CAR T-CELL THERAPY Michael Choi,¹ James Breitmeyer,² Hun Lee,³ P. Connor Johnson,⁴ Tanya Siddiqi,⁵ Joanna Rhodes,⁶ William Wierda,³ Iris Isufi,⁷ Joseph Tuscano,⁸ Lori Leslie,⁹ Jacqueline Barrientos,¹⁰ Salim Yazji², Yisrael Katz², James Robinson², Angela Pietrofeso², Susan O'Neill², Matthew Mei⁵, Caron Jacobson¹¹, Thomas J Kipps¹, Michael Wang³,

¹University of California San Diego, La Jolla, CA, ²Oncternal Therapeutics, San Diego, CA, ³MD Anderson Cancer Center, Houston, TX, ⁴Massachusetts General Hospital, Boston, MA, ⁵City of Hope, Duarte, CA, ⁶Rutgers Cancer Institute, Newark, NJ, ⁷Yale University School of Medicine, New Haven, CT, ⁸University of California, Davis, CA, ⁹John Theurer Cancer Center, Miami Beach, FL, ¹¹Dana-Farber Cancer Institute, Boston, MA.

ZILOVERTAMAB: HUMANIZED ANTI-ROR1 mAb

ROR1-TARGETING mAb

- ROR1 is an onco-embryonic kinase-like receptor not present on healthy adult tissues, but highly expressed by many solid and hematologic malignancies (including MCL, CLL, MZL)
- Wnt5a can activate ROR1 signaling, enhancing gene expression via activated ERK 1/2, NF-κB, and NRF2 – promoting cancer cell growth, migration, self-renewal, and resistance to therapy
- Zilovertamab (Zilo; formerly cirmtuzumab) is a fully humanized anti-ROR1 mAb designed to inhibit ROR1-signaling

ROR1: receptor tyrosine kinase–like orphan receptor 1 ERK 1/2: extracellular signal-regulated kinase 1/2 NF-κB: nuclear factor kappa B; NRF2: nuclear factor erythroid 2-related factor 2. Source: Kipps, Blood 2022

ZILOVERTAMAB MECHANISM OF ACTION

Treatment of Patients with Zilovertamab Inhibits Expression of NRF2-Target Genes In vivo

Besides inhibiting ROR1 signal transduction, Zilo inhibits CLL cell expression of genes induced by activated ERK1/2, NF-kB, STAT3, and NRF2 that may promote the survival and growth of CLL cells with mutated TP53 of patients treated with BTKi

ROR1-21	ROR1-22	ROR1-23	
810 02°	94° 02°	610 020	
-			- 75 - 50
•-		-2	- 37 - 25
			- 50
	ROR1-21	ROR1-21 ROR1-22 exe 50% exe 50% exe 50%	ROR1-21 ROR1-22 ROR1-23 exe 50 ^b

Source: Sanchez-Lopez, E., NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia. Cell Death & Differentiation 2020; 27(7): 2206-2216.

STUDY CIRM-0001 DESIGN

NCT03088878

Phase 1	Phase 2		
Part 1 (MCL & CLL)	Part 2 (MCL, CLL & MZL)	Part 3 (CLL)	
DOSE-FINDING COHORT	DOSE-EXPANSION COHORT	RANDOMIZED EFFICACY	
 2, 4, 8 and 16mg/kg and 300 and 600mg doses of zilovertamab^a evaluated Ibrutinib added after 1 month safety run-in (420mg CLL, 560mg MCL, qd po) RP2D:b 600mg IV Q2W x 3 then Q4W in combination with ibrutinib at approved doses 	 Primary Endpoints: safety, preliminary efficacy, pharmacology at RP2D Confirm RP2D of zilovertamab (600mg) + ibrutnib at approved dose (420mg CLL, 560mg MCL and MZL) 	 Zilovertamab + ibrutnib vs. ibrutinib 2:1 randomization Evaluate objective responses, PFS, biomarkers 	

^{a:} Formerly cirmtuzumab; ^{b:} RP2D: recommended Phase 2 dose

	1			
	Parts 1 & 2 ^c		Part 3	
	MCL zilo + ibrutinib	CLL zilo + ibrutinib	CLL zilo + ibrutinib	CLL ibrutinib
Study Population				
Patients Enrolled, n	33	34	21	10
Safety Population, ^a n	33	34	21	10
Efficacy Population, ^b n (%)	28 (84.8)	34 (100)	16 (88.9)	7 (70.0)
Ongoing, n (%)	13 (39.4)	0	2 (11.1)	10 (10.0)
Discontinued from Treatment, ^d n (%)	20 (60.6)	34 (100)	16 (88.9)	9 (90.0)

a, Safety population is comprised of all enrolled subjects who received at least one dose of zilovertamab (or ibrutinib if Part 3 ibrutinib alone arm); lation is comprised of enrolled subjects who have received at least one dose of zilovertamab and have at least one post-baseline. tumor assessment; c, At the time of the data cut (11Oct2022), there were no MZL patients evaluable for efficacy, so MZL patients are not included in the analyses; d, most common reason for discontinuing for CLL patients is completed 2 years of treatment, for MCL is disease progression.

ZILO + IBRUTINIB IN TP53-ABERRANT CLL

CLL Efficacy by TP53 mutation/del17p: Clinical Response Rates High response rates and durable responses CLL patients with TP53 mutation/del17p

Endpoints	Parts 1 & 2 (N=34)	Part 3 – Zilo + Ibr (N=16)	Part 3 – Ibr (N=7)	TP53 mutation/del17p (N=10)
Overall Response Rate (ORR), n (%)	31 (91.2)	15 (93.8)	7 (100.0)	10 (100.0)
Complete Response (CR), n (%)	3 (8.8)ª	0	1 (14.3)	1 (10.0)
Partial Response (PR), n (%)	28 (82.4) ^b	15 (93.8)	6 (85.7)	9 (90.0) ^b
Stable Disease (SD), n (%)	3 (8.8)	1 (6.3)	0	0
Median Duration of response, months (95% CI)	40.3 (33.5, NE)	NR (22.2, NE)	NR (8.3, NE)	40.3 (NE, NE)

N: number of evaluable patients; NE: not estimable; a: includes 1 unconfirmed CR, b: includes 1 PR-

CLL Efficacy: PFS and OS by TP53 mutation/del17p Status

Very encouraging landmark PFS at ~48 mo

Zilovertamab + ibrutinib Pooled Analysis of Parts 1, 2 & 3 (TP53: N=10; Non-TP53: N=40)

Note: One TP53 subject received new anti-cancer treatment, hence was censored for the PFS analysis. This subject subsequently died and is reflected in the OS analysis.

STUDY CIRM-0001 SUMMARY AND CONCLUSIONS

- Zilovertamab is a humanized mAb designed to inhibit the tumor promoting activity of ROR1.
- In CLL patients with TP53 mutation who have been treated with BTKi, zilovertamab inhibits CLL-cell expression of genes induced by activated ERK1/2, NF-kB, STAT3, and NRF2
- In patients with MCL and CLL, the combination of zilovertamab + ibrutinib was well tolerated, with a safety profile comparable to ibrutinib alone. Some side effects appeared less frequently than expected.
- The ORR was 89.3%, CRR 42.9% and median DOR 34.1 months for patients with R/R MCL on zilovertamab + ibrutinib
- PFS for zilovertamab + ibrutinib was ~95% at 24 months in patients with R/R CLL (median 2 prior LOT)
- Very encouraging PFS in CLL patients was 100% at ~48 months for patients with TP53 mutation/del17p

ACKNOWLEDGEMENTS

- To all patients and their families and caregivers
- To investigators, staff and institutions
- To Pharmacyclics LLC, an AbbVie Company, for the generous donation of ibrutinib

THANK YOU

Funding for this research was provided by the California Institute for Regenerative Medicine and Oncternal Therapeutics. Inc.

2024 Whistler Global Summit on Hematologic Malignancies

DAVA Oncology:

ONCTERNAL

therapeutics

Data as of January 04, 2024